Couchbase for
Python developers

HotCode 2013

What is Couchbase?

Couchbase

http://www.couchbase.com

Open source NoSQL database technology for interactive web and mobile apps
Easy scalability
Consistent high performance

Flexible data model

http://www.couchbase.com
http://www.couchbase.com

History. Membase

e Started inJune 2010 as Membase
e Simplicity and speed of Memcached
® But also provide storage, persistence and querying capabilities

® Initially created by NorthScale with co-sponsors Zynga and NHN

History. Merge with CouchOne

® InFebruary 2011 Membase merged with CouchOne
® (CouchOne company with many developers of CouchDB
® After merge company named Couchbase

® InJanuary 2012 Couchbase 1.8 released

History. Couchbase 2.0

® On December 2012 Couchbase 2.0 released
® New JSON document store
® Indexing and querying data
® Incremental MapReduce

® (ross datacenter replication

In total

® (ouchBaseis
® Memcached interface for managing data
® (ouchDB based interface for indexing and querying data

® Scalability (clustering, replications) out of the box

Why we need another
NoSOL solution?

What we have?

® Key-value cache in RAM
® Redis
® Memcached
® Eventually-consistent key-value store
e (assandra
® Dynamo
® Riak

What we have?

® Document store
e (ouchDB
e MongoDB
e {{name }}DB

Why we need another?

Cause developers can

This Is cool to be a NoSQL storage author

There should be a serious NoSQL storages for business
But really, | don’t know

| still prefer Redis + PostgreSQL more than Couchbase :)

CouchBase as cache storage

Couchbase 1s Memcached

® All Memcached commands® work with Couchbase
® set/add/replace
® append/prepend
® (et/delete
® incr/decr
® touch
® Stats

® “except of flush

How it works?

Connect to Memcached socket using binary protocol
Authenticate with or without password
Send Memcached command as request

Receive response from Memcached

Differences

® Additional commands
® [ock/unlock

® vBucketID value should present in each key request

What Is vBucket?

http://dustin.github.io/2010/06/29/memcached-vbuckets.html

http://www.couchbase.com/docs/couchbase-manual-2.0/couchbase-introduction-
architecture-vbuckets.html

vBucket is computed subset of all possible keys
vBucket system used for distributing data and for supporting replicas
vBucket mapping allows server know the fastest way for getting/setting data

Couchbase vBucket implementation differs from standard Memcached
iImplementation

http://dustin.github.io/2010/06/29/memcached-vbuckets.html
http://dustin.github.io/2010/06/29/memcached-vbuckets.html
http://www.couchbase.com/docs/couchbase-manual-2.0/couchbase-introduction-architecture-vbuckets.html
http://www.couchbase.com/docs/couchbase-manual-2.0/couchbase-introduction-architecture-vbuckets.html
http://www.couchbase.com/docs/couchbase-manual-2.0/couchbase-introduction-architecture-vbuckets.html
http://www.couchbase.com/docs/couchbase-manual-2.0/couchbase-introduction-architecture-vbuckets.html

vBucket mapping

Hash(KEY)

\ lt‘ \L‘ \1/ \1/ \ lt‘ \L‘ \ lf \ l{ \l{

Server A Server A Server A ServerB ServerB ServerB ServerC ServerC ServerC

9 vbuckets, 3 clusters
If hash(KEY) == vB 8:
read key from server C

vBucket mapping after new node added

Hash(KEY)

9 vbuckets, 4 clusters
If hash(KEY) == vB 8:
read key from server D

CouchBase as document storage

Same between CouchDB and Couchbase

NoSQL document database

JSON as document format

Append-only file format

Same approach for indexing and querying

CouchDB replication technology is base for Couchbase cross datacenter replication

Differences

Couchbase cache-based database in terms of read/write performance
CouchDB disk-based database

Couchbase has a built-in clustering system that allows data spread over nodes
CouchDB is a single node solution with peer-to-peer replication

Each solution has their admin interfaces (Couchbase server admin, Futon)

In total

® (Couchbase is not CouchDB

Indexing and querying data

Say hello to views!

First you need to create design document (via REST APl or admin Ul)

® Design document is collection of views

Next you need to create view and provide map/reduce functions

® View should contain map function and could contain reduce function

After Couchbase server indexing data by executing map functions and stores result
In sorted order

View map functions

Returns all document IDs from bucket
function(doc, meta) {

emit(meta.id, null);
}

Returns only JSON document IDs
function(doc, meta) {
if (meta.type == “json”) {
emit(meta.id, null);
¥

}

Multiple returns in one view
function(doc, meta) {
if (meta.type == “json”) {
if (doc.name) {
emit(doc.name, null);
}

if (doc.nameLong) {
emit(doc.nameLong, null);
}

Querying indexed data

Querying available via REST AP

Can filter results by exact key

Or using range (startkey, endkey)

All key requests should use JSON format

Also can group results, reverse results, paginate results

View reduce functions

® When you need data to be summarized or reduced

® Reduce function could be defined in view or
send while querying view via REST API

® Built-in functions
® count
® sum

® stats

Overview of Python clients

couchbase < 0.9

Very slow official Python client
Supports Memcached commands and REST API
Not ready for any usage

~300 ops/sec on my machine

couchbase >=0.9

Python client based on C libcouchbase library
Only supports Memcached commands

No REST API support

~3000 ops/sec on my machine

couchbase >=0.9

from couchbase import Couchbase

couchbase = Couchbase()

client = couchbase.connect(bucket, host, port, username, password)
client.set(‘key’, ‘value’)

assert client.get(‘key’).value == ‘value’

from couchbase import FMT_JSON
client.set(‘doc’, {‘key’: ‘value’}, FMT_JSON)
assert client.get(‘key’).value == {‘key’: ‘value’}

mcdonnell

Experimental Python client created by myself

Not open sourced yet (

Supports Memcached commands and REST API

Has Django cache backend and Celery result backend

~6000 ops/sec on my machine

mcdonnell

from mcdonnell.bucket import Bucket
client = Bucket(‘couchbase://username:password@host:port/bucket’)

client.set(‘key’, ‘value’)
assert client.get(‘key’) == ‘value’

from mcdonnell.constants import FLAG_JSON
client.set(‘doc’, {‘key’: ‘value’}, flags=FLAG_JSON)
assert client.get(‘key’) == {‘key’: ‘value’}

mcdonnell

import types

from mcdonnell.bucket import Bucket

client = Bucket(‘couchbase://username:password@host:port/bucket’)
results = client.view(‘design’, ‘view’)

assert isinstance(results, types.GeneratorType)

from mcdonnell.ddocs import DesignDoc
ddoc = DesignDoc(‘design_name’)
ddoc.views[‘view_name’] = map_function
ddoc.upload()

How we use CouchBase
in real life in GetGoing?

What we have?

® 3 mlxlarge EC2 instances
e 45 GBRAM
o 143 TBdisk

For what reasons?

® Search results cache (with ttl)
® User cache (persistance)

® Hotels data document storage (persistance)

Clustering, replications and
other NoSOL buzzwords

Clustering

® New node could be added/deleted via command line or REST API
e After node added/deleted cluster should be rebalanced

® (an auto-failover broken nodes, but only for 3+ total nodes in cluster

Cross datacenter replication

® (ould replicate to other Couchbase cluster

® (ould replicate to other storage, like ElasticSearch

Couchbase -> ElasticSearch replication

® ElasticSearch is search engine built on top of Apache Lucene, same to Solr, but
more REST API friendly

® (ouchbase has official transport to replicate all cluster data to ElasticSearch

® This enables fulltext search over cluster data

Other

® (Couchbase has experimental geo views support

® (ouchbase has two editions: community and enterprise

Questions?

| am Igor Davydenko
http://igordavydenko.com
http://github.com/playpauseandstop

http://igordavydenko.com
http://igordavydenko.com
http://github.com/playpauseandstop
http://github.com/playpauseandstop

