
Couchbase for
Python developers

HotCode 2013

What is Couchbase?

Couchbase

• http://www.couchbase.com

• Open source NoSQL database technology for interactive web and mobile apps

• Easy scalability

• Consistent high performance

• Flexible data model

http://www.couchbase.com
http://www.couchbase.com

History. Membase

• Started in June 2010 as Membase

• Simplicity and speed of Memcached

• But also provide storage, persistence and querying capabilities

• Initially created by NorthScale with co-sponsors Zynga and NHN

History. Merge with CouchOne

• In February 2011 Membase merged with CouchOne

• CouchOne company with many developers of CouchDB

• After merge company named Couchbase

• In January 2012 Couchbase 1.8 released

History. Couchbase 2.0

• On December 2012 Couchbase 2.0 released

• New JSON document store

• Indexing and querying data

• Incremental MapReduce

• Cross datacenter replication

In total

• CouchBase is

• Memcached interface for managing data

• CouchDB based interface for indexing and querying data

• Scalability (clustering, replications) out of the box

Why we need another
NoSQL solution?

What we have?

• Key-value cache in RAM

• Redis

• Memcached

• Eventually-consistent key-value store

• Cassandra

• Dynamo

• Riak

What we have?

• Document store

• CouchDB

• MongoDB

• {{ name }}DB

Why we need another?

• Cause developers can

• This is cool to be a NoSQL storage author

• There should be a serious NoSQL storages for business

• But really, I don’t know

• I still prefer Redis + PostgreSQL more than Couchbase :)

CouchBase as cache storage

Couchbase is Memcached

• All Memcached commands* work with Couchbase

• set/add/replace

• append/prepend

• get/delete

• incr/decr

• touch

• stats

• *except of flush

How it works?

• Connect to Memcached socket using binary protocol

• Authenticate with or without password

• Send Memcached command as request

• Receive response from Memcached

Differences

• Additional commands

• lock/unlock

• vBucketID value should present in each key request

What is vBucket?
• http://dustin.github.io/2010/06/29/memcached-vbuckets.html

• http://www.couchbase.com/docs/couchbase-manual-2.0/couchbase-introduction-
architecture-vbuckets.html

• vBucket is computed subset of all possible keys

• vBucket system used for distributing data and for supporting replicas

• vBucket mapping allows server know the fastest way for getting/setting data

• Couchbase vBucket implementation differs from standard Memcached
implementation

http://dustin.github.io/2010/06/29/memcached-vbuckets.html
http://dustin.github.io/2010/06/29/memcached-vbuckets.html
http://www.couchbase.com/docs/couchbase-manual-2.0/couchbase-introduction-architecture-vbuckets.html
http://www.couchbase.com/docs/couchbase-manual-2.0/couchbase-introduction-architecture-vbuckets.html
http://www.couchbase.com/docs/couchbase-manual-2.0/couchbase-introduction-architecture-vbuckets.html
http://www.couchbase.com/docs/couchbase-manual-2.0/couchbase-introduction-architecture-vbuckets.html

vBucket mapping

9 vbuckets, 3 clusters
if hash(KEY) == vB 8:
 read key from server C

vBucket mapping after new node added

9 vbuckets, 4 clusters
if hash(KEY) == vB 8:
 read key from server D

CouchBase as document storage

Same between CouchDB and Couchbase

• NoSQL document database

• JSON as document format

• Append-only file format

• Same approach for indexing and querying

• CouchDB replication technology is base for Couchbase cross datacenter replication

Differences

• Couchbase cache-based database in terms of read/write performance

• CouchDB disk-based database

• Couchbase has a built-in clustering system that allows data spread over nodes

• CouchDB is a single node solution with peer-to-peer replication

• Each solution has their admin interfaces (Couchbase server admin, Futon)

In total

• Couchbase is not CouchDB

Indexing and querying data

• Say hello to views!

• First you need to create design document (via REST API or admin UI)

• Design document is collection of views

• Next you need to create view and provide map/reduce functions

• View should contain map function and could contain reduce function

• After Couchbase server indexing data by executing map functions and stores result
in sorted order

View map functions
Returns all document IDs from bucket
function(doc, meta) {
 emit(meta.id, null);
}

Returns only JSON document IDs
function(doc, meta) {
 if (meta.type == “json”) {
 emit(meta.id, null);
 }
}

Multiple returns in one view
function(doc, meta) {
 if (meta.type == “json”) {
 if (doc.name) {
 emit(doc.name, null);
 }
 if (doc.nameLong) {
 emit(doc.nameLong, null);
 }
 }
}

Querying indexed data

• Querying available via REST API

• Can filter results by exact key

• Or using range (startkey, endkey)

• All key requests should use JSON format

• Also can group results, reverse results, paginate results

View reduce functions

• When you need data to be summarized or reduced

• Reduce function could be defined in view or
send while querying view via REST API

• Built-in functions

• _count

• _sum

• _stats

Overview of Python clients

couchbase < 0.9

• Very slow official Python client

• Supports Memcached commands and REST API

• Not ready for any usage

• ~800 ops/sec on my machine

couchbase >= 0.9

• Python client based on C libcouchbase library

• Only supports Memcached commands

• No REST API support

• ~8000 ops/sec on my machine

couchbase >= 0.9

from couchbase import Couchbase
couchbase = Couchbase()
client = couchbase.connect(bucket, host, port, username, password)
client.set(‘key’, ‘value’)
assert client.get(‘key’).value == ‘value’

from couchbase import FMT_JSON
client.set(‘doc’, {‘key’: ‘value’}, FMT_JSON)
assert client.get(‘key’).value == {‘key’: ‘value’}

mcdonnell

• Experimental Python client created by myself

• Not open sourced yet :(

• Supports Memcached commands and REST API

• Has Django cache backend and Celery result backend

• ~6000 ops/sec on my machine

mcdonnell

from mcdonnell.bucket import Bucket
client = Bucket(‘couchbase://username:password@host:port/bucket’)
client.set(‘key’, ‘value’)
assert client.get(‘key’) == ‘value’

from mcdonnell.constants import FLAG_JSON
client.set(‘doc’, {‘key’: ‘value’}, flags=FLAG_JSON)
assert client.get(‘key’) == {‘key’: ‘value’}

mcdonnell

import types
from mcdonnell.bucket import Bucket
client = Bucket(‘couchbase://username:password@host:port/bucket’)
results = client.view(‘design’, ‘view’)
assert isinstance(results, types.GeneratorType)

from mcdonnell.ddocs import DesignDoc
ddoc = DesignDoc(‘design_name’)
ddoc.views[‘view_name’] = map_function
ddoc.upload()

How we use CouchBase
in real life in GetGoing?

What we have?

• 3 m2.xlarge EC2 instances

• 45 GB RAM

• 1.43 TB disk

For what reasons?

• Search results cache (with ttl)

• User cache (persistance)

• Hotels data document storage (persistance)

Clustering, replications and
other NoSQL buzzwords

Clustering

• New node could be added/deleted via command line or REST API

• After node added/deleted cluster should be rebalanced

• Can auto-failover broken nodes, but only for 3+ total nodes in cluster

Cross datacenter replication

• Could replicate to other Couchbase cluster

• Could replicate to other storage, like ElasticSearch

Couchbase -> ElasticSearch replication

• ElasticSearch is search engine built on top of Apache Lucene, same to Solr, but
more REST API friendly

• Couchbase has official transport to replicate all cluster data to ElasticSearch

• This enables fulltext search over cluster data

Other

• Couchbase has experimental geo views support

• Couchbase has two editions: community and enterprise

Questions?

I am Igor Davydenko
http://igordavydenko.com

http://github.com/playpauseandstop

http://igordavydenko.com
http://igordavydenko.com
http://github.com/playpauseandstop
http://github.com/playpauseandstop

